Abstract

Effects of temperature and potential on the electrochemical corrosion behavior of alloy AISI 304 (UNS S30400) Stainless steel were investigated in 3 wt.% cerium nitrate (Ce[NO3]3.6H2O) solution. With an increase in electrolyte temperature from ambient temperature to 90°C, the corrosion potential of the alloy shifted towards the noble direction, and the resistance to polarization increased due to the formation of Ce-oxide on the electrode surface. The oxide films formed at the open circuit potential (OCP) and a passive potential of 0.4 VSCE were examined by x-ray photoelectron spectroscopy (XPS). The oxide film formed at 50°C and a passive potentialof 0.4 VSCE consists of mixed oxides of Ce and Cr, whereas that at OCP consists of only Cr oxide. The formation of Cr oxides on the electrode surface was primarily due to the nitrate (NO3 −) ions in Ce(NO3)3.6H2O electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.