Abstract

Caveolin-1 (cav-1) is the principal structural component of caveolae which functions as scaffolding protein for the integration of a variety of signaling pathways. In this study, we show that siRNA-induced cav-1 down regulation in human endothelial cells (EC) increased cell size and provoked cell cycle arrest at G1/S phase transition. In addition, silencing of cav-1 reduced matrix metalloproteinases (MMPs) activity which, in turn, affected cell migration and VEGF-induced tube formation of EC in vitro. These data indicate that proper expression of cav-1 is required for maintaining typical functions of EC such as proliferation and the formation of new blood vessels. In addition, we observed a marked increase of cell size, after cav-1 silencing, which might indicate the involvement of this scaffolding protein in the way by which cells perceive changes in their microenvironment. In conclusion, this study proposes cav- 1 as an interesting target molecule for studying cellular mechanisms which occur in physiological as well as pathological conditions such as senescence and tumorigenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call