Abstract

The emerging complexity of cardiac toxicity caused by cancer therapies has created demand for more advanced non-invasive methods to better evaluate cardiac structure, function, and myocardial tissue characteristics. Cardiac magnetic resonance imaging meets these needs without exposure to ionizing radiation, and with superior spatial resolution. Special applications of cardiac magnetic resonance (CMR) to assess for cancer therapy-induced cardiac toxicity include the detection of subclinical LV dysfunction through novel methods of measuring myocardial strain, detection of microcirculatory dysfunction, identification of LV and LA fibrosis, and more sensitive detection of inflammation caused by immune checkpoint inhibitors. CMR plays a significant role in the non-invasive workup of cardiac toxicity from cancer therapies, with recent advancements in the field that have opened avenues for further research and development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.