Abstract

The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal’s immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)2, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.

Highlights

  • Mammalian innate immunity relies on a family of pattern recognition receptors (PRRs) to detect conserved microbial molecules, termed pathogen-associated molecular patterns (PAMPs) [1,2]

  • This review focuses on the role of carbohydrates of bacterial endotoxin, in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/Myeloid Differentiation factor 2 (MD-2)) complex

  • While the polysaccharide O-chain seems dispensable to TLR4 activation and signalling, sugars of the core oligosaccharide play a significant role in TLR4 activation

Read more

Summary

Introduction

Mammalian innate immunity relies on a family of pattern recognition receptors (PRRs) to detect conserved microbial molecules, termed pathogen-associated molecular patterns (PAMPs) [1,2]. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-D-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.