Abstract

Type 2 diabetes (T2D) in humans is typically preceded by elevated levels of circulatory long-chain free fatty acids (LC-FFA). These excess LC-FFA are widely thought to be taken up by pancreatic β-cells, contributing to their dysfunction and death during the development of T2D; a process that has been termed lipotoxicity. Depending on their degree of saturation and carbon chain length, LC-FFA can exert different effects on pancreatic β-cells viability and function in vitro. Long-chain saturated fatty acids (LC-SFA) are thought to be toxic, whereas monounsaturated fatty acids are not and may even offer protection against the toxic effects of LC-SFAs. However, the mechanism of LC-FFA uptake into pancreatic β-cells is poorly understood, partly because it has been an understudied area of research. Determining how LC-FFA are taken up into β-cells is crucial for later formulation of therapies to prevent potential cellular overload of LC-FFA, thereby slowing the onset of T2D. In this work, we detail more than 40 years of literature investigating the role of membrane-associated transport proteins in LC-FFA uptake. By focussing on what is known in other cell types, we highlight where we can extrapolate our current understanding of protein-mediated transport to β-cells and uncover where further understanding is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.