Abstract

Supersaturation of calcium and phosphate in the bath solution and activation of the metal substrate is essential for effective biomimetic growth of apatite on orthopedic implants. In this work, bioactivation of titanium surface was achieved by electrodeposition of a thin layer of calcium phosphate followed by an alkaline treatment to obtain pure hydroxyapatite crystals. The influence of calcium gluconate in the electrolyte solution was evaluated and optimized. Adhesive strength, thickness, structural, and surface characteristics were evaluated. A highly adhesive and uniform layer of hydroxyapatite was formed on titanium surface when the electrodeposition was carried out with an electrolyte solution-containing calcium gluconate. The electrodeposited hydroxyapatite coatings were subjected for biomimetic growth in Kokubo's simulated body fluid (SBF) and Kokubo's modified SBF containing 1.5 times higher concentration of Ca. Biomimetic growth was also improved by the addition of calcium gluconate in the SBF solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.