Abstract
Ca2+‐dependent influence of excess Cu2+ on the photosynthetic akpparatus monitored through chlorophyll fluorescence measurements was investigated in runner bean plants (Phaseolus coccineus L. cv. Pie kny Jaś) at three different growth stages. It was observed that the toxic effect of excess Cu2+ on plants depends both on their growth stages and the Ca2+ content in the medium. Increased Ca2+ content limits Cu2+ action on plants at their initial growth stage (I) through: stabilization of the PSII complex (increase of the ratio of variable to minimal fluorescence [Fv/F0]), improved electron flow and reoxidative processes of the quinone primary electron acceptor of PSII (QA) (increase of quantum yield of PSII electron transport [φe] and photochemical quenching of fluorescence [qP] values) and elimination of nonphotochemical energy dissipation (decrease of nonphotochemical fluorescence quenching from the Stern‐Volmer equation [NPQ] and fraction of the absorbed light energy not used for photochemistry [LNU] values). At this growth stage excess Cu2+ decreases the rates of QA reduction as a result of decreased PSII activity at its donor side only at lower Ca2+ level. At the intermediate growth stage (II) the plants were less sensitive to Cu2+ treatment and also to changed Ca2+ content. A weakening of some photochemical processes by excess Cu2+ could be observed only at a higher Ca2+ dose. At the final growth stage of plants (III) Ca2+ ions exerted a decisively different effect on the mechanism of excess Cu2+ action on bean plants, visualized by decreased PSII stabilization and utilization of absorbed light energy at increased Ca2+ content in the medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.