Abstract

Activation of the complement system plays an important role in innate and acquired immunity. Activation of complement and subsequent formation of C5b-9 channels on the surface of cellular membranes leads to cell lysis. When the number of channels assembled on the surface of nucleated cells is limited, C5b-9 does not cause lysis, but instead can induce cell-cycle progression by activating signal transduction pathways, transcription factors, and key components of the cell-cycle machinery. Cell-cycle induction by C5b-9 is dependent on the activation of phosphatidylinositol 3-kinase and the ERK1 pathway in a Gi protein-dependent manner. Cell-cycle activation is regulated, in part, by activation of proto-oncogene c-jun and AP1 DNA binding activity. C5b-9 induces sequential activation of CDK4 and CDK2, leading to G1/S-phase transition and cellular proliferation. RGC-32 is a novel gene whose expression is induced by C5b-9. RGC-32 may play a key role in cell-cycle activation by increasing cyclin B1-CDC2 activity. C5b-9-mediated cell-cycle activation plays an important role in cellular proliferation and protection from apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call