Abstract

c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.

Highlights

  • The proto-oncogene c-MYC, located at chromosome 8q24, is one of the genes most frequently involved in human carcinogenesis

  • This review summarizes the role of c-MYC in B-cell lymphomas and leukemias, in relation to the specific subtypes classified under the 2016 revision of the World Health

  • As BCL2 rearrangement is the one of the two “hits” in double-hit lymphoma, acquisition of c-MYC rearrangement during disease progression leads to histologic transformation to high-grade B-cell lymphoma/double-hit lymphomas (DHL) and rarely plasmablastic lymphoma or blastoid transformation of follicular lymphoma (FL)/B-lymphoblastic lymphoma [101,161,162]

Read more

Summary

Introduction

The proto-oncogene c-MYC, located at chromosome 8q24, is one of the genes most frequently involved in human carcinogenesis. The transcription factor E2A immunoglobulin enhancer-binding factors (TCF3) is expressed in the GC dark zone B-cells and activates CCND3 and E2F2, which replace the CCND2-dependent proliferation in c-MYC+ GC B-cells [37]. C-MYC must be actively repressed in GC dark zone to limit the numbers of cell division before each round of antigen affinity-based selection [43], and allow normal affinity maturation to proceed, as c-MYC negatively regulates the transcriptional pause release of RNA polymerase II, which is essential for AID-mediated somatic hypermutation [44]. Abnormalities in AID activity at actively transcribed c-MYC gene locus can lead to translocations that juxtapose the Ig enhancer with the 5’ region of c-MYC, thereby abolishing the BCL6 mediated suppression of c-MYC expression in the GC dark zone [35]. The unregulated expression of c-MYC in GC B-cells leads to the bypass of affinity-based selection and perpetuation of the GC re-entry that significantly increases the chances of oncogenic genetic events for the development of B-cell lymphoma

Clinical Detection of c-MYC Abnormalities
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call