Abstract

The c-Met receptor is a therapeutically actionable target in non-small-cell lung cancer (NSCLC), with one approved drug and several agents in development. Most suitable biomarkers for patient selection include c-Met amplification and exon-14 skipping. Our retrospective study focused on the frequency of different c-Met aberrations (overexpression, amplification and mutations) in 153 primary, therapy-naïve resection samples and their paired metastases, from Biobank@UZA. Furthermore, we determined the correlation of c-Met expression with clinicopathological factors, Epidermal Growth Factor Receptor (EGFR)-status and TP53 mutations. Our results showed that c-Met expression levels in primary tumors were comparable to their respective metastases. Five different mutations were detected by deep sequencing: three (E168D, S203T, N375S) previously described and two never reported (I333T, G783E). I333T, a new mutation in the Sema(phorin) domain of c-Met, might influence the binding of antibodies targeting the HGF-binding domain, potentially causing innate resistance. E168D and S203T mutations showed a trend towards a correlation with high c-Met expression (p = 0.058). We found a significant correlation between c-MET expression, EGFR expression (p = 0.010) and EGFR mutations (p = 0.013), as well as a trend (p = 0.057) with regards to TP53 mutant activity. In conclusion this study demonstrated a strong correlation between EGFR mutations, TP53 and c-Met expression in therapy-naïve primary resection samples. Moreover, we found two new c-Met mutations that warrant further studies.

Highlights

  • The therapeutic landscape of non-small-cell lung cancer (NSCLC) harboring oncogenic driver alterations has revolutionized by the introduction of tyrosine kinase targeted inhibitors (TKIs), such as Epidermal Growth Factor Receptor (EGFR) [1], and Anaplastic Lymphoma Kinase (ALK)

  • This study revealed a strong correlation between EGFR expression and EGFR

  • We found a moderate agreement in the c-Met status between the primary resection tissues and the paired metastases

Read more

Summary

Introduction

The therapeutic landscape of non-small-cell lung cancer (NSCLC) harboring oncogenic driver alterations has revolutionized by the introduction of tyrosine kinase targeted inhibitors (TKIs), such as Epidermal Growth Factor Receptor (EGFR) [1], and Anaplastic Lymphoma Kinase (ALK)TKIs [2]. The therapeutic landscape of non-small-cell lung cancer (NSCLC) harboring oncogenic driver alterations has revolutionized by the introduction of tyrosine kinase targeted inhibitors (TKIs), such as Epidermal Growth Factor Receptor (EGFR) [1], and Anaplastic Lymphoma Kinase (ALK). There are several biomarker-defined patient subgroups, in which treatment with specific TKIs have superior clinical outcomes compared to standard conventional cytotoxic chemotherapy. The challenge faced is to identify the patient- and tumor-specific biomarkers holding the most promise to screen and select appropriate patients for TKI treatment. In most cases, acquired resistance against TKIs occurs after an average of one year, leading to renewed tumor growth and progression, suggesting specific pathogenetic mechanisms, e.g., c-Met amplification [3,4,5]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call