Abstract
We report our findings on the important role of bromide ions in the seeding growth process of Au nanorods. The seed-mediated process constitutes a well-developed method for synthesizing gold nanorods in high yield, which is facilitated by a micelle-forming surfactant, cetyltrimethylammonium bromide (CTA-Br). Despite the tremendous work in recent years, the growth mechanism of Au nanorods has not been fully understood. Contrary to the widely accepted mechanism of CTA(+) micelle-templated growth of Au nanorods, we have identified the critical role of bromide ions in the seeding growth of Au nanorods. We found that even when the micelle-forming agent (CTA(+)) concentration is below its critical micelle concentration (cmc), bromide ions added in the form of NaBr can successfully effect the growth of Au nanorods in good yield. By controlling the concentration of externally added bromide ions, the rod shape and dimensions of the resulting Au nanoparticles can be readily controlled in the presence of only a minimum amount of CTABr (as a steric stabilizer for nanorods). High-resolution TEM studies show that the as-formed nanorods are perfectly single crystalline, instead of penta-twinned ones, and are bound by {111} and {100} facets with a [110] direction as the elongation direction. A mechanism is proposed to account for the seeding growth of single crystalline Au nanorods. Overall, this work explicitly demonstrates that Br(-) indeed serves as an important shape-directing agent for gold nanorod formation in the seed-mediated process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.