Abstract

This review describes the role of bone resorption in muscle atrophy as well as in muscle protein anabolism. Both catabolic and anabolic pathways involve components of the proinflammatory cytokine families and release of factors stored in bone during resorption. The juxtaposition of the catabolic and anabolic resorption-dependent pathways raises new questions about control of release of factors from bone, quantity of release in a variety of conditions, and relation of factors released from bone. The catabolic responses involve release of calcium from bone into the circulation resulting in increased inflammatory response in intensity and/or duration. The release of transforming growth factor beta (TGF-β) from bone suppresses phosphorylation of the AKT/mTOR pathway and stimulates ubiquitin-mediated breakdown of muscle protein. In contrast, muscle IL-6 production is stimulated by undercarboxylated osteocalcin, which signals osteoblasts to produce more RANK ligand, stimulating resorptive release of undercarboxylated osteocalcin, which in turn stimulates muscle fiber nutrient uptake and an increase in muscle mass.

Highlights

  • While this review focuses on factors released by bone resorption that affect muscle wasting, it is important to mention two muscle-derived factors that may influence muscle mass possibly through interaction with bone

  • As we have seen with transforming growth factor (TGF)-β and osteocalcin, myostatin, though produced in muscle, stimulates osteoblastic RANKL to augment osteoclastogenesis in bone through SMAD-2-dependent nuclear factor of activated T cells, or NFATc1 [28]

  • Components of the inflammatory response appear to be active in the three known catabolic and anabolic effects that bone resorption products have on muscle wasting or muscle mass accretion

Read more

Summary

Introduction

The process by h bone is broken down to liberate pronndeeeueddcBteBesdodonnbbeeyyrrteethhsseooerbrpbpototdiidoyony’ns’,,smtthmheeeteaptpbarrobooloccisleeimssssms, bmb, yymoswwotshhptiirccpohhrmobbimononneinneeetliniysst,lbbybrr,uoobtkkuneetncnnooentmddeoedooxtpewwcledlexunntcbeslttilyuoovysetlhuilliivybenbe,eedblcrryeoaaa,rdlttscceeytiaou’plpsocmrridmoou,.ddmeiHsuuta,cicobnttiwssso- leivsmer,, mo w minently, but not exclusively, calciumci,noicsmoipmnl-eptleeltyeluynudnedrsetrosotodo.dH. oHwoewCviteeavtrio,enrw:,Kwhleahinta, Gwt.wLe. The process by h bone is broken down to liberate pronndeeeueddcBteBesdodonnbbeeyyrrteethhsseooerbrpbpototdiidoyony’ns’,,smtthmheeeteaptpbarrobooloccisleeimssssms, bmb, yymoswwotshhptiirccpohhrmobbimononneinneeetliniysst,lbbybrr,uoobtkkuneetncnnooentmddeoedooxtpewwcledlexunntcbeslttilyuoovysetlhuilliivybenbe,eedblcrryeoaaa,rdlttscceeytiaou’plpsocmrridmoou,.ddmeiHsuuta,cicobnttiwssso- leivsmer,, mo w minently, but not exclusively, calciumci,noicsmoipmnl-eptleeltyeluynudnedrsetrosotodo.dH. Ucer of RANKLboisontdetyoh.ceyTtheuiss,cathpeabolestoefosctyimteuilsatcianpgarbelseoropftsiotinmoufltahteinwgeraeksoarepatbsiooinnetohtfeotbhboeenweretepoalbkaecaerrdeepablsaycinendetwhbyely synthe mulating resorption of the weak areas bninoewntehlyetosybnethreespilzaecdedcablcyifineedwmlyatsryixn.thTehseizoesdteoccallacsitfiiesdthme aretrsiuxl.tdToifhffeedrioefsfnetetrioeacntlitaoisanttiioosfnthtohefetrhbeoesunbleot nmoefarrow gr alcified matrix. The osteoclast is the resdmuiaflftreroroefwntgiartainounloocfytthiec pbroenceurmsoarCrrocopeywlrlisgghetrn:a©dn2iu0n2lg1obcuyyptthieacaspuatrheoprcr.uoLird-suocrecroeofllfesneenznyzdymimnagatitcuicpppraorosdduaucpctsrtos, ,mdmuocosestrtpromine ytic precCuorpsyorirghct:e©ll2s02e10nbdyittnhheegaauuutthphoorra. IFnuntrhtehewermrbmooorneree, ,fIokIkremebbuauctichohiniee[t1t]aa.ll.F. u[[22r]]- have re osphate, daitiidonsinof ntheewCrebatoivneeCofmomrmonas tAito-n [1th]h.aeFvruemrr-oercee,nItklyebduecmhioentstarla.te[2d] ththraiabvutteitohnree(CcrCeenBcYtel)pylitcoednresema(hcotttnipv:s/a/tcrtraoe-treodf tNhaFt₭tBhe(RrAecNNepKKt)o) rppraroocdtdiuvucacetedodrbboyyfosteoclas demonsttrriabtuetidon t((ChCCaCtBBYtY)h)liecleicnresenesce(ehpt(thptt:to/p/rcsr:/ea-/ctivaNotsoFtre₭ooBcfl(aRsAtsNbKin)dpsrwodituhceodstbeoybolasatitsveteoiccocmlRamAsotnsNs.boKrignL/ldictesonwsaesci/tbthiyv/4oa.0st/e)t.eoosbtleaoosbtbillcaasRsttiAiccNRRKuunLnxxt2o2tatrracatnnivsscacrtrieippottisoiotnen-factor, th ds with ocasrteitvaeetoicvobemcloammsomtnisoc.onrRsg.o/ArligcN/enliKcsesnL/sbeytso//4b.0ay//c).tivateofaboclstaotsert,-icthRuusnpxr2omtroantisncgriopsttieoonbflaacsttoorg,etnheussisparnodmcootnintgriboustteinogbltaosttohgeennoersmisaalnlidnkcaognetroibfubtoinnge omoting o4.s0/te).oblastogenesis and contributing. 2021, 21, x; doi: FOR PEER REVIEW Int. J. 2021, 21, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijms https://www.mdpi.com/journal/ijms. Any other factors that influence the coupling of osteoblasts and osteoclasts remain to be identified

Clinical Conditions That Can Cause Resorptive Bone Loss
Factors Liberated by Bone Resorption
Bone Factor Release and Muscle Catabolism
Muscle Factors Influencing Atrophy
Discussion and Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call