Abstract

AbstractA great number of real-world networks are, in fact, one-mode projections of bipartite networks comprised of two different types of nodes. In the case of interactions between institutions engaging in collaboration for technological innovation, the underlying network is bipartite with institutions (agents) linked to the patents they have filed (artefacts), while the projection is the co-patenting network. Since projected network properties are highly affected by the underlying bipartite structure a lack of understanding of the bipartite network has consequences for the information that might be drawn from the one-mode co-patenting network. Here, we create an empirical bipartite network using data from 2.7 million patents recorded by the European Patent Office. We project this network onto the agents (institutions) and look at properties of both the bipartite and projected networks that may play a role in knowledge sharing and collaboration. We compare these empirical properties to those of synthetic bipartite networks and their projections. We show that understanding the bipartite network topology is critical for understanding the potential flow of technological knowledge. Properties of the bipartite structure, such as degree distributions and small cycles, affect the topology of the one-mode projected network—specifically degree and clustering distributions, and degree assortativity. We propose new network-based metrics as a way to quantify how collaborative agents are in the collaboration network. We find that several large corporations are the most collaborative agents in the network; however, such organizations tend to have a low diversity of collaborators. In contrast, the most prolific institutions tend to collaborate relatively little but with a diverse set of collaborators. This indicates that they concentrate the knowledge of their core technical research while seeking specific complementary knowledge via collaboration with smaller institutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.