Abstract

Harboring polyextremotolerant microbial topsoil communities, biological soil crusts (biocrusts) occur across various climatic zones, and have been well studied in the terrestrial drylands. However, little is known about the functional metabolic potential of microbial communities involved in the biogeochemical processes during the early succession of biocrusts on the tropical reef islands. We collected 26 biocrusts and bare soil samples from the Xisha Islands and Nansha Islands, and applied a functional gene array (GeoChip 5.0) to reveal nitrogen (N) cycling processes involved in these samples. Both physicochemical measurement and enzyme activity assay were utilized to characterize the soil properties. Results revealed the composition of N-cycling functional genes in biocrusts was distinct from that in bare soil. Additionally, microorganisms in biocrusts showed lower functional potential related to ammonification, denitrification, N assimilation, nitrification, N fixation, and dissimilatory nitrate reduction to ammonium compared to bare soils. Although the abundance of nifH gene was lower in biocrusts, nitrogenase activity was significantly higher compared to that in bare soils. Precipitation, soil physicochemical properties (i.e., soil available copper, soil ammonia N and pH) and soil biological properties (i.e., β-glucosidase, fluorescein diacetate hydrolase, alkaline protease, urease, alkaline phosphatase, catalase and chlorophyll a) correlated to the N-cycling functional genes structure. Nitrate N and ammonia N were more abundant in biocrusts than bare soil, while pH value was higher in bare soil. Our results suggested biocrusts play an important role in N-cycling in coral sand soil, and will be helpful in understanding the development and ecological functions of biocrusts on tropical reef islands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call