Abstract
Beta-Arg-182 in Escherichia coli F1-ATPase (beta-Arg-189 in bovine mitochondrial F1) is a residue which lies close to catalytic site bound nucleotide (Abrahams et al. (1994) Nature 370, 621-628). Here we investigated the role of this residue by characterizing two mutants, betaR182Q and betaR182K. Oxidative phosphorylation and steady-state ATPase activity of purified F1 were severely impaired by both mutations. Catalytic site nucleotide-binding parameters were measured using the fluorescence quench of beta-Trp-331 that occurred upon nucleotide binding to purified F1 from betaR182Q/betaY331W and betaR182K/betaY331W double mutants. It was found that (a) beta-Arg-182 interacts with the gamma-phosphate of MgATP, particularly at catalytic sites 1 and 2, (b) beta-Arg-182 has no functional interaction with the beta-phosphate of MgADP or with the magnesium of the magnesium-nucleotide complex in the catalytic sites, and (c) beta-Arg-182 is directly involved in the stabilization of the catalytic transition state. In these features the role of beta-Arg-182 resembles that of another positively charged residue in the catalytic site, the conserved lysine of the Walker A motif, beta-Lys-155. A further role of beta-Arg-182 is suggested, namely involvement in conformational change at the catalytic site beta-alpha subunit interface that is required for multisite catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.