Abstract

The high prevalence of allergy to β-lactam antibiotics is a worldwide issue. Accuracy of diagnostic methods is important to prove tolerance or allergy, with skin test considered the best validated in vivo method for diagnosing immediate reactions to β-lactams. Although drug provocation test is the reference standard, it cannot be performed in highly risk reactions or in those with positive skin tests. For skin tests, the inclusion of major and minor determinants of benzylpenicillin (BP) is recommended. Commercial skin test reagents have changed along time, including as minor determinants benzylpenicillin, benzylpenicilloate (BPO), and benzylpenilloate (PO). Major determinants consists of multivalent conjugates of benzylpenicilloyl coupled through amide bond to a carrier polymer, such as penicilloyl-polylysine (PPL) or benzylpenicilloyl-octalysine (BP-OL). The chemical stability of such reagents has influenced the evolution of the composition of the commercial kits, as this requirement is necessary for improving the quality and standardization of the product. In this work, we provide a detailed study of the chemical stability of BP determinants. We observed that those structures suffer from an epimerization process in C-5 at different rates. Butylamine-Benzylpenicilloyl conjugates (5R,6R)-Bu-BPO and (5S,6R)-Bu-BPO were selected as a simple model for mayor determinant to evaluate the role of the different epimers in the immunoreactivity with sera from penicillin-allergic patients. In vitro immunoassays indicate that any change in the chemical structure of the antigenic determinant of BP significantly affects IgE recognition. The inclusion of stereochemically pure compounds or mixtures may have important implications for both the reproducibility and sensitivity of in vivo and in vitro diagnostic tests.

Highlights

  • Β-lactam antibiotics (BLs) family is nowadays the first choice for the treatment of a large number of bacterial infections

  • The benzylpenicilloyl amide linked to protein constitutes the reaction product of the 95% of the penicillin molecules that reacts with proteins under physiological conditions, and it is considered the major antigenic determinant of BP

  • The chemical stability of BP skin test reagents has influenced the evolution of the composition of the commercial kits, as this requirement is necessary for improving the quality and standardization of the product

Read more

Summary

Introduction

Β-lactam antibiotics (BLs) family is nowadays the first choice for the treatment of a large number of bacterial infections. The main reason for the endorse use of such compounds in diagnosis is their high specific recognition by sIgE from penicillin-allergic patients, together with the straightforward reaction of BP with amine nucleophiles and the stability of the penicilloyl determinants formed. This has allowed modifications in homemade RAST assays, in which different carriers and solid phases have been successfully tested (Montañez et al, 2008; Ruiz-Sanchez et al, 2012; Vida et al, 2013; Mayorga et al, 2016b). The chemical stability of BP skin test reagents has influenced the evolution of the composition of the commercial kits, as this requirement is necessary for improving the quality and standardization of the product

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.