Abstract

ObjectivesTo explore the alternation of the brain baseline activity in neuromyelitis optica spectrum disorder (NMOSD) patients after myelitis, and characterize the representation of the neural plasticity process. MethodsClinical evaluation and resting-state fMRI were obtained from 20 NMOSD patients with myelitis and 20 healthy controls, matched in gender and age. Resting-state networks (RSNs) were identified through independent component analysis (ICA), and functional connectivity (FC) intra-RSNs and between region-of-interest (ROI) seed to whole-brain voxels were analyzed. Between-group comparisons and correlations with motor performance were also assessed. ResultsA total of 14 main functional RSNs were identified. Group comparison of intra-network FCs revealed that FC strengths increased in basal ganglia network (BGN) and left frontoparietal network, decreased in sensorimotor network and default mode network in NMOSD. Better motor performance was found closely correlated with higher FC of BGN. Additionally, remarkably increased FC between caudate in BGN with cerebellum, frontal lobe and parietal lobe was discovered in further ROI-based whole-brain voxels FC analysis. ConclusionsNMOSD patients presented wide brain resting-state functional connectivity alterations after myelitis, and BGN might be highly active in the process of neural plasticity in chronic stage of NMOSD. Besides, understanding neural plasticity representation, especially that in NMOSD patients after myelitis, might have important applications in monitoring and designing rehabilitative approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call