Abstract

ABSTRACTMergers of galaxy clusters are promising probes of dark matter (DM) physics. For example, an offset between the DM component and the galaxy distribution can constrain DM self-interactions. We investigate the role of the intracluster medium (ICM) and its influence on DM–galaxy offsets in self-interacting dark matter models. To this end, we employ Smoothed Particle Hydrodynamics + N-body simulations to study idealized setups of equal- and unequal-mass mergers with head-on collisions. Our simulations show that the ICM hardly affects the offsets arising shortly after the first pericentre passage compared to DM-only simulations. But later on, e.g. at the first apocentre, the offsets can be amplified by the presence of the ICM. Furthermore, we find that cross-sections small enough not to be excluded by measurements of the core sizes of relaxed galaxy clusters have a chance to produce observable offsets. We found that different DM models affect the DM distribution and also the galaxy and ICM distribution, including its temperature. Potentially, the position of the shock fronts, combined with the brightest cluster galaxies, provides further clues to the properties of DM. Overall our results demonstrate that mergers of galaxy clusters at stages about the first apocentre passage could be more interesting in terms of DM physics than those shortly after the first pericentre passage. This may motivate further studies of mergers at later evolutionary stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.