Abstract

Autophagy is associated with luteal cells death during regression of the corpus luteum (CL) in some species. However, the involvement of autophagy or the association between autophagy and apoptosis in CL regression are largely unknown. Therefore, we investigated the role of autophagy in CL regression and its association with apoptosis. Ovaries were obtained from pseudopregnant rats at Days 2 (early), 7 (mid-), and 14 and 20 (late-luteal stage) of the pseudopregnancy; autophagy-associated protein (microtuble-associated protein light chain 3 [LC3]) was immunolocalized and its expression level was measured. Luteal cell apoptosis was evaluated by measuring cleaved caspase 3 expression. LC3 expression increased slightly from early to mid-luteal stage, with maximal levels detected at the late-luteal stage in steroidogenic luteal cells. The expression level of the membrane form of LC3 (LC3-II) also increased during luteal stage progression, and reached a maximum at the end point of late-luteal stage (Day 20). This pattern coincided with cleaved caspase 3 expression. Furthermore, LC3-II expression increased, as did levels of cleaved caspase 3 in luteal cells cultured with prostaglandin F(2alpha) known to induce CL regression. These findings suggest that luteal cell autophagy is directly involved in CL regression, and is correlated with increased apoptosis. In addition, autophagic processes were inhibited using 3-methyladenine or bafilomycin A1 to evaluate the role of autophagy in apoptosis induction. Inhibition of autophagosome degradation by fusion with lysosomes (bafilomycin A1) increased apoptosis and cell death. Furthermore, inhibition of autophagosome formation (3-methyladenine) decreased apoptosis and cell death, suggesting that the accumulation of autophagosomes induces luteal cell apoptosis. In conclusion, these results indicate that autophagy is involved in rat luteal cell death through apoptosis, and is most prominent during CL regression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.