Abstract

Autophagy is activated in cardiomyocytes in ischaemic heart disease, but its dynamics and functional roles remain unclear after myocardial infarction. We observed the dynamics of cardiomyocyte autophagy and examined its role during postinfarction cardiac remodelling. Myocardial infarction was induced in mice by ligating the left coronary artery. During both the subacute and chronic stages (1 and 3 weeks postinfarction, respectively), autophagy was found to be activated in surviving cardiomyocytes, as demonstrated by the up-regulated expression of microtubule-associated protein-1 light chain 3-II (LC3-II), p62 and cathepsin D, and by electron microscopic findings. Activation of autophagy, specifically the digestion step, was prominent in cardiomyocytes 1 week postinfarction, especially in those bordering the infarct area, while the formation of autophagosomes was prominent 3 weeks postinfarction. Bafilomycin A1 (an autophagy inhibitor) significantly aggravated postinfarction cardiac dysfunction and remodelling. Cardiac hypertrophy was exacerbated in this group and was accompanied by augmented ventricular expression of atrial natriuretic peptide. In these hearts, autophagic findings (i.e. expression of LC3-II and the presence of autophagosomes) were diminished, and activation of AMP-activated protein kinase was enhanced. Treatment with rapamycin (an autophagy enhancer) brought about opposite outcomes, including mitigation of cardiac dysfunction and adverse remodelling. A combined treatment with bafilomycin A1 and rapamycin offset each effect on cardiomyocyte autophagy and cardiac remodelling in the postinfarction heart. These findings suggest that cardiomyocyte autophagy is an innate mechanism that protects against progression of postinfarction cardiac remodelling, implying that augmenting autophagy could be a therapeutic strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.