Abstract

ObjectiveLeptin reverses hyperglycemia in rodent models of type 1 diabetes (T1D). Direct application of leptin to the brain can lower blood glucose in diabetic rodents, and can activate autonomic efferents and non-shivering thermogenesis in brown adipose tissue (BAT). We investigated whether leptin reverses hyperglycemia through a mechanism that requires autonomic innervation, or uncoupling protein 1 (UCP1)-mediated thermogenesis. MethodsTo examine the role of parasympathetic and sympathetic efferents in the glucose-lowering action of leptin, mice with a subdiaphragmatic vagotomy or 6-hydroxydopamine induced chemical sympathectomy were injected with streptozotocin (STZ) to induce hyperglycemia, and subsequently leptin treated. To test whether the glucose-lowering action of leptin requires activation of UCP1-mediated thermogenesis in BAT, we administered leptin in STZ-diabetic Ucp1 knockout (Ucp1−/−) mice and wildtype controls. ResultsLeptin ameliorated STZ-induced hyperglycemia in both intact and vagotomised mice. Similarly, mice with a partial chemical sympathectomy did not have an attenuated response to leptin-mediated glucose lowering relative to sham controls, and showed intact leptin-induced Ucp1 expression in BAT. Although leptin activated BAT thermogenesis in STZ-diabetic mice, the anti-diabetic effect of leptin was not blunted in Ucp1−/− mice. ConclusionsThese results suggest that leptin lowers blood glucose in insulin-deficient diabetes through a manner that does not require parasympathetic or sympathetic innervation, and thus imply that leptin lowers blood glucose through an alternative CNS-mediated mechanism or redundant target tissues. Furthermore, we conclude that the glucose lowering action of leptin is independent of UCP1-dependent thermogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call