Abstract
We present evidence from computer simulation that the slowdown of relaxation of a standard Lennard-Jones glass-forming liquid and that of its reduction to a model with truncated pair potentials without attractive tails are quantitatively and qualitatively different in the viscous regime. The pair structure of the two models is however very similar. This finding, which appears to contradict the common view that the physics of dense liquids is dominated by the steep repulsive forces between atoms, is characterized in detail, and its consequences are explored. Beyond the role of attractive forces themselves, a key aspect in explaining the differences in the dynamical behavior of the two models is the truncation of the interaction potentials beyond a cutoff at typical interatomic distance. This leads us to question the ability of the jamming scenario to describe the physics of glass-forming liquids and polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.