Abstract

The influence of relaxations of atoms making up the DNA and atoms attached to it on radiation-induced cellular DNA damage by photons was studied by very detailed Monte Carlo track structure calculations, as an unusually high importance of inner shell ionizations for biological action was suspected from reports in the literature. For our calculations cross sections for photons and electrons for inner shell orbitals were newly derived and integrated into the biophysical track structure simulation programme PARTRAC. Both the local energy deposition in a small sphere around the interacting relaxed atom, and the number of relaxations per Gy and Gbp were calculated for several target geometries and many monoenergetic photon irradiations. Elements with the highest order number yielded the largest local energy deposition after interaction. The atomic relaxation after ionization of the L1 shell was found to be more biologically efficient than that of the K shell for high Z atoms. Generally, the number of inner shell relaxations produced by photon irradiation was small in comparison to the total number of double strand breaks generated by such radiation. Furthermore, the energy dependence of the total number of photon-induced and electron-induced relaxations at the DNA atoms does not agree with observed RBE values for different biological endpoints. This suggests that the influence of inner shell relaxations of DNA atoms on radiation-induced DNA damage is in general rather small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.