Abstract

Solutions to network optimization problems have greatly benefited from developments in nonlinear analysis, and, in particular, from developments in convex optimization. A key concept that has made convex and nonconvex analysis an important tool in science and engineering is the notion of asymptotic function, which is often hidden in many influential studies on nonlinear analysis and related fields. Therefore, we can also expect that asymptotic functions are deeply connected to many results in the wireless domain, even though they are rarely mentioned in the wireless literature. In this study, we show connections of this type. By doing so, we explain many properties of centralized and distributed solutions to wireless resource allocation problems within a unified framework, and we also generalize and unify existing approaches to feasibility analysis of network designs. In particular, we show sufficient and necessary conditions for mappings widely used in wireless communication problems (more precisely, the class of standard interference mappings) to have a fixed point. Furthermore, we derive fundamental bounds on the utility and the energy efficiency that can be achieved by solving a large family of max-min utility optimization problems in wireless networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.