Abstract
A double-headed chymotrypsin inhibitor, WCI, from winged bean seeds was cloned for structural and biochemical studies. The inhibitor was subjected to two point mutations at a conserved position, Asn14. This residue, known to have a pivotal role in stabilizing the first reactive-site loop (Gln63-Phe68) of the inhibitor, is highly conserved in the sequences of the other members of Kunitz (STI) family as well as in the sequences of Kazal family of serine protease inhibitors. The mutants, N14K and N14D, were subjected to biochemical assay and their characteristics were compared with those of the recombinant inhibitor (rWCI). Crystallographic studies of the recombinant and the mutant proteins are discussed. These studies were primarily aimed at understanding the importance of the protein scaffolding towards the conformational rigidity of the reactive-site loop. Our analysis reveals that, as the Lys14 side chain takes an unusual fold in N14K and the Asp14 side chain in N14D interacts with the loop residues by water-mediated hydrogen bonds, the canonical conformation of the loop has remained effectively intact in both the mutant structures. However, minor alterations such as a 2-fold increase in the inhibitory affinity towards the cognate enzyme were observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.