Abstract

Inorganic minerals are important compositions in biochars, but their roles in biochar functions are investigated limitedly, which restricted our understanding on biochar applications. This study applied different biomasses to produce biochars. Their properties as well as sorption to bisphenol A (BPA) were studied, with a major focus on the role of inorganic compositions. Oxalates, carbonates, as well as KCl crystals were observed in the produced biochars depending on the feedstocks and temperatures. Oxalates and KCl formed at relatively low temperature (200–300 °C), while carbonates generally formed at pyrolysis temperature above 400 °C. The separated insoluble crystal particles and the dissolved salts have limited contribution to the apparent BPA sorption, but ash content removal altered BPA sorption. The potential impact of inorganic composition to BPA sorption should be resulted from biochar properties. Based on biochar characterization and sorption comparison before and after ash removal, we proposed that the formation of inorganic mineral compositions in biochar particles may have blocked the inner pores, which limited the significance of these sorption sites. As a result, the interactions of BPA and biochars were mostly determined by biochar surface functional groups. The acid treatment removed most of the inorganic compositions, and exposed more sorption sites, which consequently increased BPA sorption. Biochar sorption capacity may be further increased if the accessibility of the inner pores could be enhanced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.