Abstract
Ascorbic acid (AA) is not only an important antioxidant, it also appears to link flowering time, developmental senescence, programmed cell death, and responses to pathogens through a complex signal transduction network. The biological activity of AA is defined by its oxidation and subsequent regeneration into the reduced form. Some studies suggest that the total endogenous level of AA influences induction of flowering and senescence. Both processes require the co-ordinated regulation of gene expression, which is mediated by various phytohormones. For example, gibberellins and salicylic acid are known to promote flowering, but inhibit or retard senescence in Arabidopsis. Ethylene and abscisic acid accelerate senescence. Ascorbic acid serves as an important co-factor for the synthesis of some of these hormones. Therefore, it is assumed that AA affects phytohormone-mediated signalling processes during the transition from the vegetative to the reproductive phase and the final stage of development, senescence. This review summarizes recent reports that investigate the effect of AA on flowering time and the onset of senescence. An attempt was made to bring these findings in context with previously characterized flowering and senescence pathways and a model is proposed that may explain how AA influences flowering and senescence both under long- and short-day conditions in Arabidopsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.