Abstract

In the oleaginous fungus Mucor circinelloides, lipid accumulation is regulated by nitrogen metabolism, which is regulated by the areA gene, a member of the GATA zinc finger transporter family and a major regulator for nitrogen metabolism. However, the role of areA in lipid accumulation in this fungus has not been reported. In order to explore the regulatory effect of areA gene on nitrogen metabolism and lipid accumulation in M. circinelloides, we constructed areA gene knockout and overexpression strains. Then, the recombinant strains were cultured and their biochemical indexes were measured. Simultaneously, transcriptomic studies on the recombinant strains were conducted to infer the regulatory mechanism of areA. The results showed that the areA knockout strain accumulated more lipid, which is 42 % higher than the control. While the areA overexpressing strain obtained the higher biomass accumulation (23 g/L) and used up the nitrogen source in the medium earlier than the control strain and knockout strain. Transcriptome data analysis showed that nr and nit-6 genes related to nitrogen metabolism were up-regulated. And the expression levels of key genes acc and aclY were higher in the areA knockout strain than others, which was positively correlated with the increased lipid accumulation. In addition, in knockout strains, protein catabolism tended to provide substrates for the lipid production, and the expression levels of the related genes were also higher than others. These results indicated that the areA gene not only controls the transcription level of genes related to nitrogen metabolism but also affects lipid accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call