Abstract

Keloids, characterized by excessive extracellular matrix (ECM) deposition and aberrant fibrous tissue proliferation, present significant therapeutic challenges due to their recalcitrant and recurrent nature. This study explores the efficacy of Carbon Ion Radiotherapy (CIRT) as a novel therapeutic approach for keloids, focusing on its impact on fibroblast proliferation, apoptosis induction, immunogenic cell death (ICD), macrophage polarization, and the TGF-β/SMAD signaling pathway. Utilizing a murine model of keloid formed by subcutaneous injection of zeocin in C57BL/6 mice, we demonstrated that CIRT effectively reduces collagenous fiber synthesis and collagen production in keloid tissues. Further, CIRT was shown to inhibit keloid fibroblast proliferation and to induce apoptosis, as evidenced by increased expression of apoptosis-related proteins and confirmed through flow cytometry and TUNEL assay. Notably, CIRT induced mitochondrial stress, leading to enhanced immunogenicity of cell death, characterized by increased expression of ICD markers and secretion of interferon-γ. Additionally, CIRT promoted a shift from M2 to M1 macrophage polarization, potentially reducing TGF-β release and mitigating ECM deposition. Our findings suggest that CIRT mediates its therapeutic effects through the inhibition of the TGF-β/SMAD signaling pathway, thereby attenuating ECM formation and offering a promising avenue for keloid treatment. This study underscores the potential of CIRT as an innovative strategy for managing keloids, highlighting its multifaceted impact on key cellular processes involved in keloid pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.