Abstract

Stem cells are invaluable resources for personalized medicine. Mesenchymal stem cells (MSCs) have received great attention as therapeutic tools due to being a safe, ethical, and accessible option with immunomodulatory and controlled differentiation properties. Apelin receptor (Aplnr) signaling is reported to be involved in biological events, including gastrulation, mesoderm migration, proliferation of MSCs. However, the knowledge about the exact role and mechanism of Aplnr signaling during mesoderm and MSCs differentiation is still primitive. The current study aims to unveil the role of Aplnr signaling during mesoderm and MSC differentiation from pluripotent stem cells (PSCs) through peptide/small molecule activation, overexpression, knock down or CRISPR/Cas9 mediated knock out of the pathway components. Morphological changes, gene and protein expression analysis, including antibody array, LC/MS, mRNA/miRNA sequencing, reveal that Aplnr signaling promotes mesoderm commitment possibly via EGFR and TGF-beta signaling pathways and enhances migration of cells during mesoderm differentiation. Moreover, Aplnr signaling positively regulates MSCs differentiation from hPSCs and increases MSC characteristics and differentiation capacity by regulating pathways, such as EGFR, TGFβ, Wnt, PDGF, and FGF. Osteogenic, chondrogenic, adipogenic, and myogenic differentiations are significantly enhanced with Aplnr signaling activity. This study generates an important foundation to generate high potential MSCs from PSCs to be used in personalized cell therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.