Abstract

Antimicrobial peptides (AMPs) represent an ancient mechanism for antagonizing microbial opponents, being generated by eukaryotes, eubacteria, and archaea alike [1,2]. Given the dearth in new antibiotics, there has been increasing interest in AMPs. As our understanding has grown, a tantalizing possibility has taken shape: Might these agents of competition be at the heart of the cooperative success story that gave rise to mitochondria and chloroplasts? Striking similarities suggest that the system of protein import into these endosymbiotic organelles may derive from an interplay of AMP attack and defense [3].

Highlights

  • Antimicrobial peptides (AMPs) represent an ancient mechanism for antagonizing microbial opponents, being generated by eukaryotes, eubacteria, and archaea alike [1,2]

  • First proposed in 1993 based on a screen for mutants sensitive to antimicrobial peptides in Salmonella [4], ribosomally produced AMPs (RAMPs) internalization was confirmed via immunogold labeling for sap homologues in non-typeable Haemophilus influenzae [5]. Such defense by import plays a role in extant endosymbiosis: In Sinorhizobium meliloti, the BacA transporter promotes defensive uptake of nodule-specific cysteine-rich (NCR) RAMPs expressed by the host plant [2,6]

  • These detoxification mechanisms have striking analogies to protein targeting to eukaryotic organelles [3], in which nuclear encoded proteins addressed to mitochondria or chloroplasts harbor highly divergent N-terminal presequences termed as “targeting peptides (TPs)” [7,8]

Read more

Summary

Introduction

Antimicrobial peptides (AMPs) represent an ancient mechanism for antagonizing microbial opponents, being generated by eukaryotes, eubacteria, and archaea alike [1,2]. Given the dearth in new antibiotics, there has been increasing interest in AMPs. As our understanding has grown, a tantalizing possibility has taken shape: Might these agents of competition be at the heart of the cooperative success story that gave rise to mitochondria and chloroplasts? Striking similarities suggest that the system of protein import into these endosymbiotic organelles may derive from an interplay of AMP attack and defense [3] As our understanding has grown, a tantalizing possibility has taken shape: Might these agents of competition be at the heart of the cooperative success story that gave rise to mitochondria and chloroplasts? Striking similarities suggest that the system of protein import into these endosymbiotic organelles may derive from an interplay of AMP attack and defense [3]

OPEN ACCESS
AMPs can be detoxified through import
PLOS PATHOGENS
Findings
Descent from AMP defense accounts for TP sequence degeneracy
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call