Abstract

ABSTRACTDue to production time constraints, most reanalyses are produced in multiple parallel streams instead of a single continuous one. These streams cover separate segments of the reanalysis time period with short overlaps to allow reconstruction of the official record. A fundamental assumption justifying this approach is that the streams will be assimilating the same observations during the periods where they overlap, and so will eventually converge to a similar atmospheric state, making discontinuities at stream junctions negligible. This assumption is revisited in this work by examining the impact of analysis error on the differences between MERRA-2 overlapping streams in three historical periods. Comparison results are shown in terms of standard deviations of stream differences as well as the spectral decomposition of the variance of their differences. Residual differences were found at the end of each year of overlap, with larger values observed in the earlier segments of the presatellite era. By drawing parallels with analysis error statistics estimated from the GMAO OSSE system, these differences are shown to reflect the varying constraint of data with the varying observing network, and to further carry the imprint of errors that the data assimilation process is not able to mitigate. As such, they are unlikely to be reduced by longer spinup periods. The ability of data assimilation to ensure continuity in the parallel streams is put into question when the observing system coverage is inadequate or simply when the data assimilation system as a whole is suboptimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call