Abstract

Soil enzymes play a key role in the circulation of nutrients and the functioning of the ecosystem. The aim of the study was to assess how the tree species of urban agglomerations affect soil quality and enzymatic activity (dehydrogenases DEH, catalase CAT, alkaline AlP and acid AcP phosphatase, protease PR, β-glucosidase GLU, and urease UR). To this end, soil samples were taken from beneath nine park trees. The risk of soil contamination by selected heavy metals (Pb, Ni, Cd) was also investigated against the background of the selected physicochemical properties. Enzyme activity results were used to calculate multi-parametric indices of soil quality: availability factor (AF), enzymatic pH indicator (AlP/AcP), biological index of fertility (BIF), geometric mean (GMea), alternation index (Al3), biochemical soil activity (BA16 and BA17). The results showed statistically significant differences in physicochemical and enzymatic properties of soil depending on tree species. Correlation analysis showed that the content of total organic carbon (TOC), total nirogen (TN), total phosphorus (TP) and humus (OM) in soil significantly influenced the activity of the studied enzymes and glomalin content. AF coefficient values (1.84%–18.19%) suggest that the bioavailability of available phosphorus (AP) was sufficient. The Pb, Ni, Cd content results were found to be low and did not exceed the permissible concentrations. DEH, CAT and AlP activity were highest under common hawthorn, and AcP, GLU and PR under northern white cedar. The calculated enzymatic indicators proved to be a sensitive and accurate indicator of the dynamics of changes taking place in the city park soil. Based on the results, an attempt can be made to assess the planning of sustainable development of studied areas of urban parks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.