Abstract

Aluminium is found to play a key role in the process of forming a mechanically stable and highly porous and granular structure of 4H silicon carbide. The material is prepared by a high temperature reaction of the elemental constituents. The reactions are carried out under different background atmospheres, including nitrogen. Ternary carbides containing Al, Si and N, are formed in the process, and are believed to be responsible for the final outcome of the process, at the highest reaction temperatures, in the form of pure, well-connected grains of 4H-SiC forming a strong and rigid structure with high porosity. The Al containing compounds function as structural promoters for the 4H polytype recrystallization. This is expected - and partly shown - to take place through substitution with 4H-SiC and evaporation of all other constituents during the high temperature sintering step. When extruded into honeycomb structures prior to the sintering process this pure mesoporous SiC final product turns out to be ideal for a combined diesel particulate filter with support for catalysts in the pores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.