Abstract

As an important emerging pollutant, the fate of microplastics (MPs) in ecosystems is of growing global concern. In addition to hydrodynamics and animals, algae can also affect the transport of MPs in aquatic environments, which could potentially remove MPs from the water column. Although researchers have conducted many studies on the sink of MPs regulated by algae in both marine and freshwater environments, there is still a lack of comprehensive understanding coupled with the increasingly scattered study contents and findings. This review aims to provide a systematic discussion of the processes, mechanisms, and influencing factors, which are coupled with the sink of MPs changes by algae. The main processes identified include retention, flocculation, deposition, and degradation. The retention of MPs is achieved by adhesion of MPs to algae or embedment/encrustation of MPs within the epibiont matrix of algae, thereby preventing MPs from migrating with water currents. The extracellular polymeric substances (EPS) and enzymes produced by algal metabolic activities can lead not only to the formation of aggregates containing MPs but also to the biodegradation of MPs. The processes that algae alter the fate of MPs in aquatic environments are very complex and can be influenced by various factors such as algal attributes, microplastic characteristics and environmental conditions. This review provides insights into recent advances in the fate of aquatic MPs and highlights the need for further research on MPs-algae interactions, potentially shortening the knowledge gap in the sink of MPs in aquatic ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.