Abstract

Catabolite repression and derepression on delta-aminolevulinate synthase (ALA-S) and delta-aminolevulinate dehydratase (ALA-D) in a normal yeast strain, D27, and its derived D27/C6 (HEM R+) were investigated. ALA-S and ALA-D activities and intracellular ALA (I-ALA) at different physiological states of the cells were measured. In YPD medium, under conditions of repression and when glucose was exhausted, both strains behaved identically as if the mutation was not expressed. In YPEt medium, however, both ALA-S and ALA-D activities were higher than in YPD, but the I-ALA content and the enzymic activity profiles shown by the two strains were quite different. It appears, therefore, that the mutation causes a deregulation of ALA-S, so that its activity is kept at a high level throughout the cell cycle. This would explain the increased levels of cytochromes present in the mutant. This mutation may affect some regulatory aspect of ALA formation and renders an ALA-S of high activity; moreover, this enzyme species seems to be more stable than in the normal strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.