Abstract

Mutations in cardiac troponin T (TnT) are a cause of familial hypertrophic cardiomyopathy (FHC). Transgenic mice expressing a missense mutation (R92Q) or a splice site donor mutation (Trunc) in the cardiac TnT gene have mutation-specific phenotypes but mice of both models have smaller hearts compared to wild type and exhibit hemodynamic dysfunction. Because growth-related signaling pathways in the hearts of mice expressing TnT mutations are not known, we evaluated the impact of increased Akt or glycogen synthase kinase-3β (GSK-3β) activity in both mutant TnT mice; molecules that increase heart size via physiologic pathways and block pathologic growth, respectively. Expression of activated Akt dramatically augments heart size in both R92Q and Trunc mice; however, this increase in heart size is not beneficial, since Akt also increases fibrosis in both TnT mutants and causes some pathologic gene expression shifts in the R92Q mice. Activated GSK-3β results in further decreases in left ventricular size in both R92Q and Trunc hearts, but this decrease is associated with significant mutation-specific phenotypes. Among many pathologic consequences, activating GSK-3β in R92Q hearts decreases phosphorylation of troponin I and results in early mortality. In contrast, increased GSK-3β activity in Trunc hearts does not significantly impact cardiac phenotypes. These findings demonstrate that increased Akt and its downstream target, GSK-3β can impact both cardiac size and phenotype in a mutation-specific manner. Moreover, increased activity of these molecules implicated in beneficial cardiac phenotypes exacerbates the progression of disease in the R92Q TnT mutant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call