Abstract
Abstract This study examines the role of the air–sea coupled process in the seasonal predictability of Asia–Pacific summer monsoon rainfall by comparing seasonal predictions from two carefully designed model experiments: tier 1 (fully coupled model) and tier 2 (AGCM with prescribed SSTs). In these experiments, an identical AGCM is used in both tier 1 and tier 2 predictions; the daily mean SSTs from tier 1 coupled predictions are prescribed as a boundary condition in tier 2 predictions. Both predictions start in April from 1982 to 2009, with four ensemble members for each case. The model used is the Climate Forecast System, version 2 (CFSv2), the current operational climate prediction model for seasonal-to-interannual prediction at the National Centers for Environmental Prediction (NCEP). Comparisons indicate that tier 2 predictions produce not only higher rainfall biases but also unrealistically high rainfall variations in the tropical western North Pacific (TWNP) and some coastal regions as well. While the prediction skill in terms of anomaly correlations does not present a significant difference between the two types of predictions, the root-mean-square errors (RMSEs) are clearly larger over the above-mentioned regions in the tier 2 prediction. The reduced RMSE skills in the tier 2 predictions are due to the lack of a coupling process in AGCM-alone simulations, which, particularly, results in an unrealistic SST–rainfall relationship over the TWNP region. It is suggested that for a prediction of summer monsoon rainfall over the Asia–Pacific region, it is necessary to use a coupled atmosphere–ocean (tier 1) prediction system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.