Abstract

Amphotericin B (AmB) is a potent antimicrobial agent used in clinical practice. Nevertheless, the mechanism of its aqueous instability remains not yet fully understood, especially the role that its aggregation state plays in this process. Therefore, the current study used an aqueous methanol media to evaluate the AmB instability as a function of pH-, organic solvent- and concentration-dependent ionization and aggregation. To reach this goal, the aggregation status and instability were determined using UV–vis spectroscopy, LC-MS and HPLC. Moreover, not only the hydrolytic degradation products were identified by UV–vis spectroscopy and LC-MS, but also, the degradation rate constants were estimated by nonlinear regression. The results indicated that monomeric AmB was the predominant species under pH conditions, wherein the substrate was cationic (pH < 4) or anionic (pH > 9). On the other hand, aggregated AmB form was the predominant species for the zwitterionic substrate (at methanol concentration < 30 %(v/v)). Anionic substrate degraded by specific base-catalyzed lactone hydrolysis. Oxidation accounted for the loss of zwitterionic substrate. Aggregated zwitterionic AmB exhibited lower stability than monomeric zwitterionic AmB under neutral pH conditions. These studies are a step forward in comprehending the degradation kinetics of AmB in aqueous medium. In fact, along with our previous research on AmB instability in oils, it leads to a better understanding of the AmB stability in complex systems with an oil–water interface, such as disperse lipid systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call