Abstract

BackgroundAerobic training (AT) improves glycemic control in patients with type 2 diabetes. However, the role of the progression of training variables remains unclear. The objective of this review was to analyze the effects of progressive AT (PAT) and non-progressive AT (NPAT) on glycated hemoglobin (HbA1c) in patients with type 2 diabetes.MethodsData sources used were PubMed, Cochrane Central, Embase, SPORTDiscus, and LILACS. Studies that evaluated the effect of at least 12 weeks of PAT and NPAT compared to a control condition on HbA1c levels in type 2 diabetes patients were eligible for analysis. Two independent reviewers screened the search results, extracted the data, and assessed the risk of bias. Effect sizes (ESs) were calculated using the standardized mean difference in HbA1c levels between the intervention and control groups using a random-effect model.ResultsOf 5848 articles retrieved, 24 randomized clinical trials (825 participants) were included. Among the included studies, 92% reported to have performed a randomization process, 8% presented allocation concealment, 21% reported blinding of outcome assessment, and 38% reported complete outcome data. AT reduced HbA1c levels by 0.65% (ES: − 1.037; 95% confidence interval [CI]: − 1.386, − 0.688; p < 0.001). The reduction in HbA1c induced by PAT was 0.84% (ES: − 1.478; 95% CI − 2.197, − 0.759; p < 0.001), and NPAT was 0.45% (ES: − 0.920; 95% CI − 1.329, − 0.512; p < 0.001). Subgroup analysis of the different forms of progression showed a reduction in HbA1c levels of 0.94% (ES: − 1.967; 95% CI − 3.783, − 0.151; p = 0.034) with progression in volume, 0.41% (ES: − 1.277; 95% CI − 2.499, − 0.056; p = 0.040) with progression in intensity, and 1.27% (ES: − 1.422; 95% CI − 2.544, − 0.300; p = 0.013) with progression in both volume and intensity. Subgroup analysis of the different modalities of AT showed a reduction of 0.69% (ES: − 1.078; 95% CI − 1.817, − 0.340; p = 0.004) with walking and/or running and of 1.12% (ES: − 2.614; 95% CI − 4.206, − 1.022; p = 0.001) with mixed protocols while progressive training was adopted. In non-progressive protocols, a significant HbA1c reduction was only found with walking and/or running (− 0.43%; ES: − 1.292; 95% CI − 1.856, − 0.72; p < 0.001).ConclusionThe effect of PAT on glycemic control was greater than that of NPAT, especially when volume and intensity were progressively incremented throughout the interventions.

Highlights

  • Aerobic training (AT) improves glycemic control in patients with type 2 diabetes

  • The reduction in Glycated hemoglobin (HbA1c) induced by progressive AT (PAT) was 0.84% (ES: − 1.478; 95% confidence intervals (CIs) − 2.197, − 0.759; p < 0.001), and non-progressive AT (NPAT) was 0.45% (ES: − 0.920; 95% CI − 1.329, − 0.512; p < 0.001)

  • Subgroup analysis of the different forms of progression showed a reduction in HbA1c levels of 0.94% (ES: − 1.967; 95% CI − 3.783, − 0.151; p = 0.034) with progression in volume, 0.41% (ES: − 1.277; 95% CI − 2.499, − 0.056; p = 0.040) with progression in intensity, and 1.27% (ES: − 1.422; 95% CI − 2.544, − 0.300; p = 0.013) with progression in both volume and intensity

Read more

Summary

Introduction

Aerobic training (AT) improves glycemic control in patients with type 2 diabetes. the role of the progression of training variables remains unclear. Aside from the benefits to these different outcomes, many studies have investigated the role of different training variables, such as duration [9, 10], intensity [11–13], weekly frequency [14], and characteristics such as training supervision [10, 15] and training environment (aquatic or dry-land) [16–19], on type 2 diabetes control, with a particular focus on HbA1c reduction. For this goal, the current recommendations for structured AT include training preferably supervised, with weekly duration of at least 150 min of moderate to vigorous intensity performed in three or more sessions per week and with no more than 2 days between exercise sessions. These findings show that the optimization of glycemic control by AT may depend on training dosage (volume and intensity) and on the progression of the volume and/or intensity of training

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.