Abstract

Around the world, there is a growing increase in biofuels consumption, mainly ethanol and biodiesel as well as their blends with diesel that reduce the cost impact of biofuels while retaining some of the advantages of the biofuels. This increase is due to several factors like decreasing the dependence on imported petroleum; providing a market for the excess production of vegetable oils and animal fats; using renewable and biodegradable fuels; reducing global warming due to its closed carbon cycle by CO2 recycling; increasing lubricity; and reducing substantially the exhaust emissions of carbon monoxide, unburned hydrocarbons, and particulate emissions from diesel engines. However, there are major drawbacks in the use of biofuel blends as NOx tends to be higher, the intervals of motor parts replacement such as fuel filters are reduced and degradation by chronic exposure of varnish deposits in fuel tanks and fuel lines, paint, concrete, and paving occurs as some materials are incompatible. Here, fuel additives become indispensable tools not only to decrease these drawbacks but also to produce specified products that meet international and regional standards like EN 14214, ASTM D 6751, and DIN EN 14214, allowing the fuels trade to take place. Additives improve ignition and combustion efficiency, stabilize fuel mixtures, protect the motor from abrasion and wax deposition, and reduce pollutant emissions, among other features. Two basic trends are becoming more relevant: the progressive reduction of sulfur content and the increased use of biofuels. Several additives' compositions may be used as long as they keep the basic chemical functions that are active.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call