Abstract

The importance of easily biodegradable organic substances such as acetate and propionate in biological phosphate removal has been recognised by many researchers. Laboratory-scale studies on the performance of three-stage modified Bardenpho nutrient removal systems, fed with settled sewage supplemented with 0, 50, 100 and 200 mg/l sodium acetate respectively are described. Particular attention is given to the effects of these additions on biological phosphate release and uptake and also to the fate of parameters such as pH, calcium, potassium, ammonia and nitrate. Additional phosphate of 10 mg/l (as P) was initially introduced into the feed in order to burden the experimental systems beyond their normal phosphate removal capacity. This was increased to 20 mg/l and eventually to 40 mg/l of phosphate (as P). Increasing concentrations of sodium acetate resulted in distinct increases in pH values, increase in phosphate release in the anaerobic zones and significantly improved overall phosphate removal in the experimental units. The correlation of phosphate removal on acetate concentration was found to be 0.9886. In some instances the unit receiving 200 mg/l acetate removed up to an average of 30 mg/l of phosphate (as P), constituting an improvement of up to 200% compared with the unit receiving no acetate. The alternating release and uptake of phosphate was accompanied by an equivalent sequence for potassium and magnesium. The high pH value plus the disappearance of phosphate, ammonia and magnesium places doubt on a purely biological phosphate removal but could point at the crystallization of ammonium magnesium phosphate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call