Abstract

The process of sight (photostasis) produces, as a by-product, a chromophore called 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E-octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E, 3E, 5E-hexatrienyl]-pyridinium (A2E), whose function in the eye has not been defined as yet. In youth and adulthood, A2E is removed from human retinal pigment epithelial (h-RPE) cells as it is made, and so it is present in very low concentrations, but with advanced age, it accumulates to concentrations reaching 20 microM. In the present study we have used photophysical techniques and in vitro cellular measurements to explore the role of A2E in h-RPE cells. We have found that A2E has both pro- and antioxidant properties. It generated singlet oxygen (phiso = 0.004) much less efficiently than its precursor trans-retinal (phiso = 0.24). It also quenched singlet oxygen at a rate (10(8) M(-1) s(-1)) equivalent to two other endogenous quenchers of reactive oxygen species in the eye: alpha-tocopherol (vitamin E) and ascorbic acid (vitamin C). The endogenous singlet oxygen quencher lutein, whose quenching rate is two orders of magnitude greater than that of A2E, completely prevented light damage in vitro, suggesting that singlet oxygen does indeed play a role in light-induced damage to aged human retinas. We have used multiphoton confocal microscopy and the comet assay to measure the toxic, phototoxic and protective capacity of A2E in h-RPE cells. At 1-5 microM, A2E protected these cells from UV-induced breaks in DNA; at 20 microM, A2E no longer exerted this protective effect. These results imply that the role of A2E is not simple and may change over the course of a lifetime. A2E itself may play a protective role in the young eye but a toxic role in older eyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call