Abstract

Signaling by cytokines such as the interferons (IFNs) involves Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. The beauty of the classical model of JAK-STAT signaling is its simplicity in that JAK-activated STATs in the nucleus are responsible for specific gene activation. The fact that many ligands, growth factors, and hormones use the same STAT transcription factors, but exert different functions at the level of the cell, tissue, and organ would suggest significant shortcomings in the classical model. Our studies have resulted in the development of a non-canonical, more complex model of IFN signaling that bears a striking resemblance to that of steroid hormone (SH)/steroid receptor (SR) signaling. Thus, both types I and II IFN signaling involves nuclear translocation of complexed ligand, receptor, activated JAKs, and activated STATs to the promoters of the genes that are specifically activated by the IFNs, where they are involved in specific gene activation and epigenetic remodeling. Receptor intracellular domains play an important role in binding the C-terminus of the IFNs, which is the basis for our development of IFN mimetics. The IFN mimetics are not recognized by poxvirus decoy receptors, since the decoy receptors compete for extracellular binding and not intracellular binding. Further, the type I IFN mimetics provide therapeutic protection against experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis, without the side effects. Extracellular receptor binding by intact IFN is the primary reason for undesirable side effects of flu-like symptoms, bone-marrow suppression, and weight loss. The non-canonical model of IFN signaling thus provides insight into the specificity of such signaling and a mechanism for development of IFN mimetics. It is our contention that this model applies to other cytokines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.