Abstract

Although many of the biochemical mechanisms which regulate production or clearance of the amyloid-beta protein (Abeta) of Alzheimer's disease (AD) are now well understood, the mechanism of Abeta neurotoxicity remains unclear. A number of studies have shown that Abeta can disrupt neuronal Ca(2+) homeostasis by inducing influx of extracellular Ca(2+) into the neuronal cytoplasm. Ca(2+) is known to play an important role in neuronal excitability, synaptic plasticity and neurotoxicity. Therefore, Abeta-induced Ca(2+) dysregulation may contribute to many of the cognitive and neuropathologic features of AD. In vitro studies show that Abeta can increase ion permeability in lipid membranes. This increased permeability is reportedly associated with the formation of artificial ion pores formed from Abeta oligomers. However, a number of other studies show that Abeta can activate endogenous ion channels on the cell surface. There is also increasing evidence that presenilin mutations alter intracellular Ca(2+) stores. It is likely that elucidation of the mechanism by which Abeta and presenilin cause Ca(2+) dysregulation in neurons will help to identify new drug targets for the treatment of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.