Abstract
Decorin, a small leucine-rich proteoglycan, regulates extracellular matrix organization, growth factor-mediated signaling, and cell growth. Because decorin may directly modulate immune responses, we investigated its role in a mouse model of contact allergy (oxazolone-mediated delayed-type hypersensitivity [DTH]) in decorin-deficient (Dcn(-/-)) and wild-type mice. Dcn(-/-) mice showed a reduced ear swelling 24 h after oxazolone treatment with a concurrent attenuation of leukocyte infiltration. These findings were corroborated by reduced glucose metabolism, as determined by (18)fluordeoxyglucose uptake in positron emission tomography scans. Unexpectedly, polymorphonuclear leukocyte numbers in Dcn(-/-) blood vessels were significantly increased and accompanied by large numbers of flattened leukocytes adherent to the endothelium. Intravital microscopy and flow chamber and static adhesion assays confirmed increased adhesion and reduced transmigration of Dcn(-/-) leukocytes. Circulating blood neutrophil numbers were significantly increased in Dcn(-/-) mice 24 h after DTH elicitation, but they were only moderately increased in wild-type mice. Expression of the proinflammatory cytokine TNF-α was reduced, whereas syndecan-1 and ICAM-1 were overexpressed in inflamed ears of Dcn(-/-) mice, indicating that these adhesion molecules could be responsible for increased leukocyte adhesion. Decorin treatment of endothelial cells increased tyrosine phosphorylation and reduced syndecan-1 expression. Notably, absence of syndecan-1 in a genetic background lacking decorin rescued the attenuated DTH phenotype of Dcn(-/-) mice. Collectively, these results implicated a role for decorin in mediating DTH responses by influencing polymorphonuclear leukocyte attachment to the endothelium. This occurs via two nonmutually exclusive mechanisms that involve a direct antiadhesive effect on polymorphonuclear leukocytes and a negative regulation of ICAM-1 and syndecan-1 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.