Abstract

ObjectiveTo investigate the differential expression profile of lncRNAs in the nonalcoholic fatty liver disease (NAFLD) model induced by oleic acid (OA) and to further explore the role of LINC01260 (ENST00000255183) in NAFLD, providing theoretical support for the clinical value of lncRNAs in NAFLD.MethodsOA (50 μg/mL) was used to induce steatosis in normal human LO2 hepatocytes for 48 h and was verified by Oil red O staining. Differential expression profiles of lncRNAs were obtained by eukaryotic circular sequencing (RNA/lncRNA/circRNA-seq) techniques. A gain-of-function (GOF) strategy for LINC01260 was adopted, Oil red O staining and semiquantitative analysis were combined to explore whether the GOF of LINC01260 affects LO2 cell steatosis. CeRNA-based bioinformatics analysis of lncRNAs was performed, and the enriched mRNAs were further verified. RXRB siRNAs were applied and verify its role in LINC01260 regulated OA-induced hepatocytes steatosis.ResultsLipid droplets of different sizes were observed in the cells of the OA group. Absorbance in the OA group was significantly increased after isopropanol decolorization (P < 0.05). Compared with those in the control group, there were 648 lncRNAs with differential expression greater than 1 time in the OA group, of which 351 were upregulated and 297 were downregulated. Fluorescence quantitative PCR showed that the expression of LINC01260 in the OA group was downregulated by 0.35 ± 0.07-fold (P < 0.05). The formation of lipid droplets in LO2 cells of the LINC01260 GOF group decreased significantly (P < 0.05). CeRNA analysis indicated that the mRNA levels of RXRB, RNPEPL1, CD82, MADD and KLC2 were changed to different degrees. Overexpression of LINC01260 significantly induced RXRB transcription (P < 0.05) and translation, and RXRB silence attenuated the lipids decrease induced by LINC01260 overexpression.ConclusionThe OA-induced NAFLD cell model has a wide range of lncRNA differential expression profiles. LINC01260 participates in the regulation of the lipid droplet formation process of NAFLD, and its overexpression can significantly inhibit the steatosis process of LO2 cells. Mechanistically, LINC01260 may act as a ceRNA to regulate the expression of RXRB, thereby affecting the adipocytokine signaling pathway.

Highlights

  • Nonalcoholic fatty liver disease (NAFLD) is a syndrome mainly characterized by diffuse hepatocyte bullous fat

  • A hepatic steatosis model was established in cultured LO2 cells A hepatic steatosis model was established using cultured LO2 cells by oleic acid (OA) induction

  • Cell viability of the OA group treated with a dose was less than 50 μg/mL showed no statistically significant decrease compared with the control group (Fig. 1c), indicating that 50 μg/mL OA treatment is the best dose for hepatic steatosis induction

Read more

Summary

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a syndrome mainly characterized by diffuse hepatocyte bullous fat. The cause of NAFLD is very complicated, but alcohol and other clear liver damage factors are excluded [1]. NAFLD has become the most common chronic liver disease and the primary reason for abnormal liver biochemical indicators in health examinations in China [2], bringing a considerable health and economic burden to patients, families, and society. LncRNAs can regulate many biological processes, including the cell cycle, apoptosis, and differentiation [3]. Many studies have confirmed that lncRNAs play an important role in the occurrence and development of NAFLD [4,5,6,7]. Emerging evidence suggests that lncRNAs may regulate hepatic lipid metabolism in NAFLD

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call