Abstract
Based on hyperbolic geometric considerations, Roger and Yang introduced an extension of the Kauffman bracket skein algebra that includes arcs. In particular, their skein algebra is a deformation quantization of a certain commutative curve algebra, and there is a Poisson algebra homomorphism between the curve algebra and the algebra of smooth functions on decorated Teichmüller space. In this paper, we consider surfaces with punctures which are not the 3-holed sphere and which have an ideal triangulation without self-folded edges or triangles. For those surfaces, we prove that Roger and Yang’s Poisson algebra homomorphism is injective, and the skein algebra has no zero divisors. A section about generalized corner coordinates for normal arcs may be of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.