Abstract

In this work tailor robust metrics are proposed to be used in the predictors’ space of distance-based predictive models. The first proposal is a robust version of Gower’s distance, which takes into account the correlation structure of the data. The second one is a rather complex metric, constructed via Related Metric Scaling, which is able to discard redundant information coming from different sources. Another novelty is the proposal of a distance-based trimming statistic to robustify the metrics. The performance of the models based on new robust metrics is evaluated through a simulation study and compared to those based on Euclidean, Gower’s and generalized Gower’s metrics in the presence of outliers in several datasets of multivariate heterogeneous data. Mean squared error (also median and standard deviation) are used to evaluate the effectiveness in the prediction of responses. Finally, two applications in the areas of sustainable transport and finance and banking are provided in order to illustrate the predictive power of these models. Computations are made using the dbstats package for R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.