Abstract
Single machine scheduling is a classical optimization problem that depicts multiple real life systems in which a single resource (the machine) represents the whole system or the bottleneck operation of the system. In this paper we consider the problem under a weighted completion time performance metric in which the processing time of the tasks to perform (the jobs) are uncertain, but can only take values from closed intervals. The objective is then to find a solution that minimizes the maximum absolute regret for any possible realization of the processing times. We present an exact branch-and-bound method to solve the problem, and conduct a computational experiment to ascertain the possibilities and limitations of the proposed method. The results show that the algorithm is able to optimally solve instances of moderate size (25–40 jobs depending on the characteristics of the instance).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.